上海花千坊419论坛

小升初数学精选100题 小升初常考数学题目 小升初数学压轴题100道

本文章由注册用户 文学大杂烩 上传提供 2023-10-30 ★★ 评论 0
摘要:虽然小学阶段的学习都是基础知识,但对数学学科而言,小学的基础学习至关重要,是整个学科的地基,这一时期需要大量的练习加以巩固,本文就为大家整理了小升初数学精选100题,希望对您有所帮助。

小升初数学试题易错题

1、王老师带班上48名同学一起划船,每条船最多坐6人,至少应租几条船?

本题错误原因主要有:1.理解题意时对条件分析不透彻;2.应用有余数除法解决实际问题时对余数思考不全面。关于条件“王老师带班上48名同学一起划船”的理解应是一共有49人(包括王老师),列式49÷6=8(条)……1(人),由于还余1人,所以应再多租一条船,8+1=9(条),答案是至少应租9条船。

2、放学回家,小红的前面是西,她的右面、后面和左面各是什么方向?

本题错误原因主要是已有的知识和经验不足,对东、南、西、北四个方向的认识不清晰,其次对这四个方向的关系不明确。首先,根据太阳从东方升起,明确生活中面向东时,前面是东,后面是西,左面是北,右面是南,那么面向西时方向应该是相对的,与东相对的是西,与南相对的是北。其次,可以按照顺时针东、南、西、北的顺序来记忆。正确答案:小红的前面是西,她的后面是东,左面是南,右面是北。

3、□里最大可以填几? 40□6<4058

对比较数的大小的方法不熟练,数位相同,从高位比起。思考时分析不全面,误以为□中的数只能小于5。在比较时,左边与右边都是四位数,接着从高位比起。千位与百位数字相同,接下来比十位,那十位可以不可也相同呢?我们可以发现个位的6小于8,所以十位相同也是符合这题的,那么□里最大可以填5。

4、按规律填数,并读一读。

980,985,990,( ),( ),( )

3030,3020,3010,( ),( ),( )

对万以内数的顺序不熟练,对十进制计数法没有正确而完整的认识。第一题,从980,985,990这三个数可见是5个5个地数,990再添5个,可以看个位增加5是995,个位再增加5是10,满十进1,十位9添上进的1又满十,再进1,百位同理进到位,所以是1000,正确答案是995,1000,1005。第二题可见10个10个数,3010减少10个为3000,3000减少10个,十位与百位为0,从千位隔位退位为2990,正确答案是3000,2990,2980。

5、把下面的长度按从短到长的顺序排一排。

3米 32分米 4厘米 47毫米

( )<( )<( )<( )

本题出错的原因主要有:1.容易只关注单位,而不能数值与单位一起看具体的长度;2.单位换算的方法不熟练。根据长度单位之间的进率,借助数的组成理解单位换算的方法,将4个不同单位的长度转换为同一单位的长度。3米=3000毫米,32分米=3200毫米,4厘米=40毫米,所以4厘米<47毫米<3米<32分米。

6、丁丁把17粒大米连接在一赵鼎 ,量得长大约是1分米。

170粒这样的大米接在一起的长大约是( )米,

1700粒这样的大米接在一起的长大约是( )米。

本题错误的原因主要是从17粒到170粒,1700粒的变化无法与长度对应起来。170里面有10个17,所以170粒米长度应为10个1分米,即10分米,10分米=1米,同理1700里面有100个17,即100分米,100分米=10米。可对应排列起来更易理解之间的联系。

17粒 1分米

170粒 10分米 1米

1700粒 100分米 10米

7、判断题:书本上的直角比三角尺上的直角大。( )

对比较角的大小的方法不清晰,误以为书本比三角尺大,所以书本上的直角较大。角的大小与它两条边叉开的程度有关,叉开得越大角就越大。书本上的直角与三角尺上的直角叉开得一样大,所有的直角都一样大。所以这题应该是错的。

8、合理计算经过的天数

(1)小丽学校2015年的寒假从2月3日开始,到2月最后一天结束,寒假一共有( )天。

(2)小林参加军训活动,从8月27日开始,到9月5日结束,军训了( )天。

首先要注意年份是平年还是闰年,月份是大月还是小月。然后看是从哪一天开始到哪一天结束。建议可以用列举天数的方式解答。本题的具体解答如下:

(1)首先确定2月有多少天,因为2015是平年,所以2月有28天,所以从2月3日开始到2月28日结束,一共经过:28-3+1=26(天)

(2)首先可以看出题目中的时间是跨月份的,所以计算的时候,应该分两段时间来计算:8月27日到8月31日(因为8月有31天)一共有31-27+1=5(天)、9月1日到9月5日一共有5-1+1=5天。所以一共军训了10天

9、求经过的时间

李叔叔上夜班,他晚上8时30分上班,第二天早上6时下班。他夜班要工作多长时间?

这题考察的是对计时法的应用。首先要熟练掌握“普通计时法”和“24时计时法”之间的转换,其次,对于求这种跨度不是一天的经过时间,建议把时间分两段进行计算。因为24时计时法中,一天的0时同时是前一天的24时,所以以0时为界,前面为一段,后面为一段。在本题中,为了计算方便,先把普通计时法转换为24计时法:晚上8时30分是20时30分、早上6时是6时,所以两段时间是20时30分——24时、0时(24时)——6时,分别计算时间:24:00-20:30=3(时)30(分)、6:00-0:00=6(时)、6小时+3小时30分=9小时30分。

10、商店有三种钢笔,价格分别是8元、15元、24元;有两种笔记本,价格分别是6元、9元。小亮带100元去商店购买钢笔和笔记本。

(1)买1支钢笔和3本笔记本,最多要用多少元?最少呢?

(2)买1支钢笔和1本笔记本,最多找回多少元?最少呢?

在这一题中,有几个关键的词语:最多(少)要用、最多(少)找回,一定要搞清楚“要用”是指的买东西花掉钱,而“找回”是指买东西剩下的钱。搞清这一点后,再去判断“最多(少)要用”是指买价钱最高(低)的物品花的钱,“最多(少)找回”是指买价钱最低(高)的物品后剩下的钱。

所以现在我们来看问题“(1)买1支钢笔和3本笔记本,最多要用多少元?最少呢?” 最多要用多少钱,就是去买价格最高的物品,也就是1支24元的钢笔和3个9元的笔记本,列式为:24+3×9=51(元)。类似的可以解决最少用的钱。问题“(2)买1支钢笔和1本笔记本,最多找回多少元?最少呢?”中,要求最多找回的钱,那么就要花去最少的钱,所以购买的是价格最低的钢笔和笔记本,列式为:8+6=14(元) 100-14=86(元)。类似的可以解决最少找回的钱。

小升初常考数学题目

1、某零件厂去年生产零件1000件,今年比去年多生产500件,求去年占前年生产量的百分之几?

解:由题可知这道题也是上述的关键词题型,关键字是“占”那么这个字前面的量是“去年”,后面的量是“今年 ”,去年题中已知1000件,今年比去年多500件,则今年1000 500=1500件,两个量全部已知,那么根据公式可知:1000÷1500×100%=66.67%

2、六年级男生人数为25人,女生人数是35人,求男生是女生的百分之几?女生是男生的百分之几?男生占全班的百分之几?女生为全班的百分之几?

解:有题可知,这是一道经典的关键字题型,首先做题之前,把有用的信息列出来,男:25 女:35 全班:25 35=60.这是根据题我们可以得到的有用的信息,接下来看问题,男是女的百分之几?同样根据公式可知,25÷35×100%=71.4%,同样接下来的问题解题思路一模一样,套公式即可。

3、甲数是15,乙数是20,甲数比乙数少百分之几?乙数比甲数多百分之几?

我也见过其他老师讲解的过程,画线段图一目了然,但是太费时间,找单位1有些复杂,找错了直接就错。其实上面的题中关键字是“比”,解这类题公式:(大数-小数)÷关键字后面的数×100%,顾名思义,大数和小数就是题中一个大的和一个小的数值。

回到例题当中,大数就是乙数20,小数就是甲数15,第一问关键字后面的数是乙数20,第二问关键字后面的数是甲数15.

第一问:利用公式(20-15)÷20×100%=25%

第二问:利用公式(20-15)÷15×100%=33.3%

4、某商场打折活动,原价5000元的商品,现在只要3000元,请问降价了百分之几?

有些人应该看了有些疑惑,这是上述题型吗?其实仔细看问题,这就是隐藏关键字的题型,问题是降价了百分之几?那么降价是比起什么降价呢?肯定是比原价降价了多少,那么问题可以改为:现价比原价降价了百分之几?改完问题之后那是不是就简单多了,和例题1基本相似了。同样利用公式大数是原价,小数是现价,关键字后面是原价,所以套用公式是(5000-3000)÷5000×100%=40%

5、有一项工程,原计划15天完成,实际20天完成,实际比计划每天少完成百分之几?

分析:这是一道没有隐藏关键字的题,直接利用公式即可。这是一道有关工程问题的题型,本质上问的就是实际工效比计划工效少百分之几。

解:计划工效:1/15 实际工效:1/20 大数为1/15 小数为1/20 套用公式求得:(1/15-1/20)÷1/15×100%=25%

6、某服装厂去年生产服装5000件,今年生产服装6000件,求今年增产了百分之几?

分析:在本道题中找不到关键字,但是可以变换问题,今年增产多少肯定是相比去年增产的,所以问题可以改为:今年比去年多生产百分之几?

解:大数是今年6000件,小数是去年5000件,关键字后是去年5000件,利用公式:(6000-5000)÷5000×100%=20%

7、已知5a=6b求a:b=?

在解决这类题时,其实在考试中是白送分的题,而且保证能写出正确答案,已知5a=6b,以后遇到时直接给答案:a:b=6:5

8、甲数的75%等于乙数的50%,求甲乙两数的比?

其实这类题型和类型一一模一样,可以把题写成75%甲=50%乙,甲的系数是75%,乙数的系数是50%,既然等于系数反比那么甲:乙=50%:75%,化为最简比是2:3.

9、1/a:1/b=?

有关分数比的最简比,正常情况下通分处理,但是简便方法:有关分数比(分子都是1)的最简比为分数分母的反比。

即1/a:1/b=b:a

10、有甲乙两辆汽车,甲车速度的1/3,等于乙车速度的1/5,求甲乙两车的速度比?

解:类型二的题型转变为应用题,可以简化写成1/3甲=乙1/5,同样甲乙两车比等于系数的反比,即甲:乙=1/5:1/3,化为最简比可知分母都是1,利用类型三的解题思路,等于分母的反比,即1/5:1/3=3:5

小学升初中常考数学题目

和差问题

例:已知两数的和是10,差是2,求这两个数。

按口诀,则大数=(10 2)÷2=6,小数=(10-2)÷2=4。

鸡兔同笼问题

例:鸡免同笼,有头36 ,有脚120,求鸡兔数。

求兔时,假设全是鸡,则兔子数=(120-36×2)÷(4-2)=24。

求鸡时,假设全是兔,则鸡数 =(4×36-120)÷(4-2)=12。

浓度问题

1、例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?

加水先求糖,原来含糖为:20×15%=3(千克)。

糖完求糖水,含3千克糖在10%浓度下应有多少糖水:3÷10%=30(千克)

糖水减糖水,得到加水量:30-20=10(千克)。

2、例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?

加糖先求水,原来含水为:20×(1-15%)=17(千克)。

水完求糖水,含17千克水在20%浓度下应有多少糖水:17÷(1-20%)=21.25(千克)。

糖水减糖水,得到加糖量,21.25-20=1.25(千克)。

路程问题

1、例:甲、乙两人从相距120千米的两地相向而行,甲的速度为40千米/时,乙的速度为20千米/时,经过多少时间两人相遇?

相遇那一刻,路程全走过。即甲、乙两人走过的路程和恰好是两地的距离120千米。

除以速度和,就把时间得。即甲、乙两人的总速度为两人各自的速度之和是40 20=60(千米/时),所以经过120÷60=2(小时)两人相遇。

2、例:姐、弟二人从家里去镇上,姐姐步行速度为3千米/时,先走2小时后,弟弟骑自行车出发,速度为6千米/时,经过几个小时弟弟能追上姐姐?

先走的路程,为:3×2=6(千米)。

速度的差,为:6-3=3(千米/时)。

所以经过6÷3=2(小时)弟弟能追上姐姐。

和比问题

例:甲、乙、丙三数的和为27,甲:乙:丙=2:3:4,求甲、乙、丙三个数。

分母比数和,即分母为:2 3 4=9。

分子自己的,则甲、乙、丙三个数占和的比例分别为:2/9,3/9,4/9。

和乘上比例,所以甲数为:27×2/9=6,乙数为:27×3/9=9,丙数为:27×4/9=12。

差比问题(差倍问题)

例:甲数比乙数大12,甲:乙=7:4,求两个数。

先求一倍的量,12÷(7-4)=4。

所以甲数为:4×7=28,乙数为:4×4=16。

归一问题

1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?

(1)买1支铅笔多少钱?0.6÷5=0.12(元)

(2)买16支铅笔需要多少钱?0.12×16=1.92(元)

列成综合算式0.6÷5×16=0.12×16=1.92(元)

答:需要1.92元。

2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?

(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)

(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)

列成综合算式90÷3÷3×5×6=10×30=300(公顷)

答:5台拖拉机6天耕地300公顷。

3、辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?

(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)

(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)

(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)

列成综合算式105÷(100÷5÷4×7)=3(次)

答:需要运3次。

小升初数学题目及答案

归总问题

1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?

(1)这批布总共有多少米?3.2×791=2531.2(米)

(2)现在可以做多少套?2531.2÷2.8=904(套)

列成综合算式3.2×791÷2.8=904(套)

答:现在可以做904套。

2、小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?

(1)《红岩》这本书总共多少页?24×12=288(页)

(2)小明几天可以读完《红岩》?288÷36=8(天)

列成综合算式24×12÷36=8(天)

答:小明8天可以读完《红岩》。

3、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?

(1)这批蔬菜共有多少千克?50×30=1500(千克)

(2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)

列成综合算式50×30÷(50+10)=1500÷60=25(天)

答:这批蔬菜可以吃25天。

和差问题

1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?

甲班人数=(98+6)÷2=52(人)

乙班人数=(98-6)÷2=46(人)

答:甲班有52人,乙班有46人。

2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

长=(18+2)÷2=10(厘米)

宽=(18-2)÷2=8(厘米)

长方形的面积=10×8=80(平方厘米)

答:长方形的面积为80平方厘米。

3、有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。

甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知

甲袋化肥重量=(22+2)÷2=12(千克)

丙袋化肥重量=(22-2)÷2=10(千克)

乙袋化肥重量=32-12=20(千克)

答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

4、甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?

“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)

乙车筐数=97-64=33(筐)

答:甲车原来装苹果64筐,乙车原来装苹果33筐。

小升初数学题精选

和倍问题

1、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?

(1)杏树有多少棵?248÷(3+1)=62(棵)

(2)桃树有多少棵?62×3=186(棵)

答:杏树有62棵,桃树有186棵。

2、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?

(1)西库存粮数=480÷(1.4+1)=200(吨)

(2)东库存粮数=480-200=280(吨)

答:东库存粮280吨,西库存粮200吨。

3、甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?

每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,

那么,几天以后甲站的车辆数减少为

(52+32)÷(2+1)=28(辆)

所求天数为(52-28)÷(28-24)=6(天)

答:6天以后乙站车辆数是甲站的2倍。

4、甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?

乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。

因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;

又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;

这时(170+4-6)就相当于(1+2+3)倍。那么,

甲数=(170+4-6)÷(1+2+3)=28

乙数=28×2-4=52

丙数=28×3+6=90

答:甲数是28,乙数是52,丙数是90。

差倍问题

1、果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?

(1)杏树有多少棵?124÷(3-1)=62(棵)

(2)桃树有多少棵?62×3=186(棵)

答:果园里杏树是62棵,桃树是186棵。

2、爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?

(1)儿子年龄=27÷(4-1)=9(岁)

(2)爸爸年龄=9×4=36(岁)

答:父子二人今年的年龄分别是36岁和9岁。

3、商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?

如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此

上月盈利=(30-12)÷(2-1)=18(万元)

本月盈利=18+30=48(万元)

答:上月盈利是18万元,本月盈利是48万元。

4、粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?

由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此

剩下的小麦数量=(138-94)÷(3-1)=22(吨)

运出的小麦数量=94-22=72(吨)

运粮的天数=72÷9=8(天)

答8天以后剩下的玉米是小麦的3倍。

小升初数学压轴题

倍比问题

1、100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?

(1)3700千克是100千克的多少倍?3700÷100=37(倍)

(2)可以榨油多少千克?40×37=1480(千克)

列成综合算式40×(3700÷100)=1480(千克)

答:可以榨油1480千克。

2、今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?

(1)48000名是300名的多少倍?48000÷300=160(倍)

(2)共植树多少棵?400×160=64000(棵)

列成综合算式400×(48000÷300)=64000(棵)

答:全县48000名师生共植树64000棵。

3、凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?

(1)800亩是4亩的几倍?800÷4=200(倍)

(2)800亩收入多少元?11111×200=2222200(元)

(3)16000亩是800亩的几倍?16000÷800=20(倍)

(4)16000亩收入多少元?2222200×20=44444000(元)

答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。

相遇问题

1、南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?

392÷(28+21)=8(小时)

答:经过8小时两船相遇。

2、小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?

“第二次相遇”可以理解为二人跑了两圈。

因此总路程为400×2

相遇时间=(400×2)÷(5+3)=100(秒)

答:二人从出发到第二次相遇需100秒时间。

3、甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

“两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,

相遇时间=(3×2)÷(15-13)=3(小时)

两地距离=(15+13)×3=84(千米)

答:两地距离是84千米。

追及问题

1、好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?

(1)劣马先走12天能走多少千米?75×12=900(千米)

(2)好马几天追上劣马?900÷(120-75)=20(天)

列成综合算式75×12÷(120-75)=900÷45=20(天)

答:好马20天能追上劣马。

2、小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是

(500-200)÷[40×(500÷200)]

=300÷100=3(米)

答:小亮的速度是每秒3米。

3、我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。由此推知

追及时间=[10×(22-6)+60]÷(30-10)

=220÷20=11(小时)

答:解放军在11小时后可以追上敌人。

4、一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,

这个时间为16×2÷(48-40)=4(小时)

所以两站间的距离为(48+40)×4=352(千米)

列成综合算式(48+40)×[16×2÷(48-40)]

=88×4

=352(千米)

答:甲乙两站的距离是352千米。

小学升初中数学真题

1、一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?

136÷2+1=68+1=69(棵)

答:一共要栽69棵垂柳。

2、一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?

400÷4=100(棵)

答:一共能栽100棵白杨树。

3、一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?

220×4÷8-4=110-4=106(个)

答:一共可以安装106个照明灯。

4、给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?

96÷(0.6×0.4)=96÷0.24=400(块)

答:至少需要400块地板砖。

5、爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?

35÷5=7(倍)

(35 1)÷(5 1)=6(倍)

答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。

6、母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?

(1)母亲比女儿的年龄大多少岁?37-7=30(岁)

(2)几年后母亲的年龄是女儿的4倍?30÷(4-1)-7=3(年)

列成综合算式(37-7)÷(4-1)-7=3(年)

答:3年后母亲的年龄是女儿的4倍。

7、甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?

这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:

过去某一年 今年 将来某一年

甲 □岁 △岁 61岁

乙 4岁 □岁 △岁

表中两个“□”表示同一个数,两个“△”表示同一个数。

因为两个人的年龄差总相等:□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,

因此二人年龄差为(61-4)÷3=19(岁)

甲今年的岁数为△=61-19=42(岁)

乙今年的岁数为□=42-19=23(岁)

答:甲今年的岁数是42岁,乙今年的岁数是23岁。

8、一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?

由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25(千米)

船的逆水速为25-15=10(千米)

船逆水行这段路程的时间为320÷10=32(小时)

答:这只船逆水行这段路程需用32小时。

9、甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?

由题意得甲船速+水速=360÷10=36

甲船速-水速=360÷18=20

可见(36-20)相当于水速的2倍,所以,水速为每小时(36-20)÷2=8(千米)

又因为,乙船速-水速=360÷15,所以,乙船速为360÷15+8=32(千米)

乙船顺水速为32+8=40(千米)

所以,乙船顺水航行360千米需要

360÷40=9(小时)

答:乙船返回原地需要9小时。

10、一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?

火车3分钟所行的路程,就是桥长与火车车身长度的和。

(1)火车3分钟行多少米?900×3=2700(米)

(2)这列火车长多少米?2700-2400=300(米)

列成综合算式900×3-2400=300(米)

答:这列火车长300米。

声明:生活十大、生活排行榜等内容源于程序系统索引或网民分享提供,仅供您参考、开心娱乐,不代表本网站的研究观点,请注意甄别内容来源的真实性和权威性。申请删除>> 纠错>>

网站提醒和声明
本站为注册用户提供信息存储空间服务,非“MAIGOO编辑”、“MAIGOO榜单研究员”、“MAIGOO文章编辑员”上传提供的文章/文字均是注册用户自主发布上传,不代表本站观点,版权归原作者所有,如有侵权、虚假信息、错误信息或任何问题,请及时联系我们,我们将在第一时间删除或更正。 申请删除>> 纠错>> 投诉侵权>> 网页上相关信息的知识产权归网站方所有(包括但不限于文字、图片、图表、著作权、商标权、为用户提供的商业信息等),非经许可不得抄袭或使用。
提交说明: 快速提交发布>> 查看提交帮助>> 注册登录>>
相关推荐
六年级奥数思维训练题100道 六年级数学竞赛100题及答案
六年级已经完成了小学的全部学习,而奥数的学习则可以让学生开拓思维,从而更容易接受初中知识,一些小学奥数题甚至可以难倒许多初中学生甚至家长,本文就为大家带来了六年级奥数思维训练题100道,你全都会做吗?
【小升初】小升初准备物品有哪些 初一住宿学生开学物品清单
忙完了孩子小升初学校的选择,各位新初一的家长又纷纷为开学要住校孩子张罗着要带些什么。为大家提供了初一住宿学生开学物品。知道要准备哪些学习和生活用品吗?小升初有什么注意事项?看看小编的汇总,希望对广大家长和即将成为中学生的孩子们都有所帮助!
学生青少年 学校 ★★★
2.6万+ 216
奥数行程问题100道 行程问题经典题型 行程应用题100题及答案
行程问题是小学奥数中的一大基本问题。行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一,包含多人行程、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题等。本文就为大家整理了奥数行程问题100道,希望对您有所帮助。
小升初备考复习计划 抓紧最后一学年
大多数的民办初中,特别是教学质量较好,升学率较高的民办初中,都会采用各种方法对学生进行测试和筛选。其中最常见的方式有MK,面试,人机面试等。六年级是备战小升初的最后阶段,在这个阶段既要归纳和树立知识点,提升解题速度和能力,又要做好考前的心理疏导,拥有良好的备战心态,关于小升初的备考计划,一起来了解下吧。
100道解方程数学题 解方程练习题大全 方程应用题100道带答案
方程是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”,求方程的解的过程称为“解方程”,这一部分的学习内容非常重要,本文就为大家整理了100道解方程数学题,希望对您有所帮助。