一、虾青素是从哪里提取的
自然界的虾青素来源于藻类、细菌、浮游植物。一些水生物种包括虾蟹在内的甲壳类动物,由于长期食用这些藻类、细菌和浮游植物而外表呈现红色,它们又被三文鱼、加力鱼等鱼类,火烈鸟、鸡、鸭等鸟类、家禽捕食,色素储存在皮肤和脂肪组织中使它们的皮肤和羽毛也呈现红色。因此,天然虾青素也可从甲壳类动物、鱼类、鸟类、家禽类中获得。
研究发现很多种类的藻类如雪藻、衣藻、裸藻、伞藻等都含有虾青素,其中雨生红球藻对虾青素的积累量最高可达到细胞干重的4%,积累速率和生产总量比其它绿藻类高,是目前公认生产天然虾青素最好的生物来源。细菌由于受其自身因素的影响,利用价值较低。红法夫酵母被认为是目前真菌发酵生产中最为合适的虾青素来源。从红法夫酵母中提取虾青素是生产虾青素的主要途径之一。
雨生红球藻(H.pluvialiso)是一种单细胞生物,在培养过程中,在氮源充足时,可以促进细胞生长;在氮源缺乏时,则能刺激细胞产生并在体内积累虾青素。雨生红球藻生产虾青素具有细胞繁殖快、培养简单、易于提取的特点,且藻粉可直接应用于食品及饲料工业,降低成本,因此被认为是一种很有虾青素生产前景的微藻。国外优良的雨生红球藻藻体中虾青素一般约占类胡萝卜素总量的90%以上,其生产质量较好,以酯化态的形式存在占总类胡萝卜素的60%—80%,少量为游离态形式。但雨生红球藻生长条件相对要求高,培养周期长,需光照和破壁释放虾青素等缺点。
绿球藻(Chlorella zofingiensis)属于绿藻门小球藻属,具有容易培养、生长快速、耐高温和极端pH、易在户外培养等特点。其合成虾青素兼具红发夫酵母和雨生红球藻二者的部分优势特征,可以利用有机物如葡萄糖为碳源和能源在无光条件下快速合成虾青素,最适生长温度和最适虾青素合成温度24℃都接近室温。碳氮比越高越有利于虾青素的合成。虾青素以酯化态形式在细胞质中大量积累,比较容易达到较高的细胞浓度,同时生长繁殖与虾青素的积累可同步进行。这些特性有利于简化生产设备,节约生产时间,提高生产效率,为大规模培养提供有利因素。但需要解决的是小球藻中虾青素含量远低于雨生红球藻中虾青素的含量,可能是合成途径的缺陷导致。因此,现阶段有人利用基因工程手段,对虾青素合成途中关键酶的基因表达进行调控,或引入外源基因优化小球藻的虾青素合成途径,有可能突破生理水平常规诱导增产虾青素的局限。
另据报道,衣藻(halamidomonas)、裸藻(euglena)、伞藻(acetabularin)等也含有一定量虾青素。
二、虾青素的提取方法
目前虾青素的生产主要有化学合成和天然提取两种方式,化学合成的虾青素不仅价格昂贵,而且分子结构生物学功能、应用效果及生物安全性能方面和天然虾青素存在显著差异,进而促使天然虾青素的提取逐渐占据主导地位。
随着对虾青素提取方法研究不断深入,虾青素生产工艺得到不断优化和升级,尤其是在虾青素的分离和提纯方面。目前天然虾青素的生产方法主要有两大类:生物发酵法和从甲壳类动物加工下脚料中提取法。其具体的分离提纯工艺有碱提法、油脂溶出法、有机溶剂萃取法、超临界萃取法、酶解法、微波处理法等。
典型的通过动物甲壳超临界萃取法提取虾青素的工艺流程如下 :
虾壳粉碎→稀酸处理→冲洗至中性→干燥→装料→超临界静态萃取→超临界循环萃取→收集→皂化→液相色谱分析纯化→包装→冷冻保藏
从红法夫酵母中提取虾青素工艺流程为:
红法夫酵母菌体活化→接种→发酵→离心收集菌体→烘干→破壁处理→浸提→浓缩→分析提取虾青素
应当指出,动物甲壳中的石灰质会影响虾青素产量,动物甲壳提取法生产条件要求苛刻,生产成本高、产量较低、产品纯度不高。因此,目前仅有少数国家应用这种技术生产虾青素。从红法夫酵母中提取虾青素产量高,但提取加工过程中可能存在污染物的残留、浓缩等问题。
(一)天然提取
从水产品加工废弃物中提取虾青素被广泛利用,该法在创造经济收益的同时,能够降低生产加工废水的色度、减少污染,常用碱提法、油溶法、有机溶剂法和超临界CO2萃取法等。
1、碱提法
碱提法是用酸将水产品加工下脚料甲壳中的CaCO3溶解,用碱(NaOH Na2CO3)将与蛋白质结合的虾青素分离,再将其中的蛋白质溶出,达到提取虾青素的目的。碱提法需消耗大量的酸、碱,其废水对环境污染严重,而且虾青素在碱性环境下高温处理时,被氧化成为鲜红色的虾红素,因此碱提法所得到的不是虾青素而是虾红素或虾青素的其它降解产物。近年来对碱提法的研究报道较少。
2、油溶法
虾青素的分子结构使其具良好的脂溶性,在油中对热有较好稳定性,因此用油作为溶剂,通过油脂提取,然后再纯化。该法所用油脂主要为可食用油脂类,最常见的是大豆油,提取时油温最好控制在80℃以下,油温较高也会影响虾青素的稳定性,油用量直接影响虾青素的提取效率,提取后的纯化可采用层析方法进行。
该法具有产品安全、提取效率高的特点,但提取物不易与高沸点的油分离,提取后含色素的油不易浓缩,故产品浓度不高,若要进一步分离纯化,需采用分子蒸馏等工艺,分离成本较高。
3、有机溶剂法
利用有机溶剂提取虾青素,选择沸点低的萃取剂提取,提取液经蒸发获得到高浓度虾青素油,蒸馏技术还可以使溶剂回收循环利用。常见的有机溶剂有丙酮、乙醇、乙醚、石油醚、二氯甲烷、氯仿、正己烷等。不同的溶剂提取效果不同,在研究中发现,丙酮的提取效果最好,而乙醇最差。为提高提取效率,采用减压回流提取的方法,提取温度最好控制在60℃左右。有机溶剂法提取可采用浸提和回流提取的方法,浸提法又可分为单罐多次重复萃取和索氏提取法;前者是将试样放入匀浆器中提取,当溶剂中的虾青素浓度达到平衡后,将萃取液放出,再加溶剂进行下一次萃取,重复多次直到原料中虾青素完全提取;后者是改良的单罐多次重复萃取,其优点是不断用新鲜的溶剂进行提取,萃取剂和原料始终保持最大的浓度差,加快了萃取速度,提高了萃取率,最后得到的萃取液浓度较高。
4、超临界CO2萃取法
超临界流体萃取技术就是利用临界流体的特殊性质,在高压条件下与待分离的固体或液体混合物接触,调节系统的操作压力和温度,萃取出所需要的物质,随后通过降压或升温的方法,降低超临界流体的密度,使萃取物得到分离。
超临界CO2萃取得到的产品具有纯度高、溶剂残留少、无毒副作用等优点,与其它方法比较,该法可以避免虾青素的降解,得到高品质的产品,又可以有效地提取虾青素,但由于设备前期投资大、生产技术要求高,目前用于大规模工业生产尚存在一定困难。
除上述方法外,还有人利用酶法提取虾青素,选用某种较好的絮凝剂将蛋白质和虾青素回收絮凝,然后采用酸性蛋白酶和中性蛋白酶对蛋白质进行酶解,同时分离获得虾青素;还有将碱法和有机溶剂法结合的复合工艺提取虾青素等。但是水产品加工下脚料提取虾青素受到多方面制约,如下脚料的卫生问题、生产的环境问题、提取物的污染变质、废弃物原料中虾青素含量高低变化对提取成本的影响,以及原料中的几丁质、灰分、湿度都限制虾青素的提取。
5、红发夫酵母生产
1976年首次在红发夫酵母(Phaffia rhodozyma)中发现虾青素,红发夫酵母属于担子菌纲的红发夫酵母属,是唯一天然可产虾青素的酵母,其反式虾青素已于2000年获得FDA批准,用于食品添加剂。红发夫酵母以单细胞为主,有时形成假菌丝,繁殖方式为无性繁殖的芽殖,无有性繁殖,细胞中不但含有丰富的蛋白质、脂类、维生素,而且还含有大量的不饱和脂肪酸及多种虾青素的前体,其生长的温度范围0—27℃。在野生酵母所产的10多种类胡萝卜素中,虾青素是最大的组分,占总类胡萝卜素的40%—95%。
红发夫酵母已成为工业化生产虾青素的优良菌种,其生产虾青素的特点是:红发夫酵母不需要光照,能利用多种糖作为碳源进行快速异养代谢,发酵周期短,生产速度快,能够在发酵罐中实现高密度培养,以及色素提取后菌体单细胞蛋白可作为饵料、饲料添加剂等。
另外,有人利用从葡萄园土壤中分离出的粘红酵母,经过紫外线和EMS诱变处理获得的突变株产生虾青素,还有人从保加利亚酸奶中分离出一种深红酵母(Phadotoralarubra),从南极海冰中分离的酵母菌也有合成虾青素的能力,这都有可能成为获取虾青素的新途径。
(二)化学合成
由β-胡萝卜素转变为虾青素需加上2个酮基和2个羟基,化学合成比较困难,且产物大多为顺式结构,而生物合成需要的虾青素大多数为反式结构。虾青素的合成需经多步化学和生物催化反应才能完成,其中生物催化作用是选择确定合成过程中间体碳原子的立体构型或氧原子的取代位置,化学合成的主要前体物质为(S)-3-乙酸基-4-氧代-β-紫萝酮,它是由不同的微生物对(R)-萜烯醇醋酸盐的不对称水解,后经萃取、反流分布及重结晶等技术处理所得产物,这种前体物质经过反应转化为含15个碳原子的维悌希盐,最后由2个维悌希盐与1个含10个碳原子的双醛反应生成虾青素,该工艺十分复杂,合成比较困难,世界上只有个别企业用化学合成法工业化生产虾青素,且合成的反式虾青素价格昂贵。
(三)其它方法
除天然提取、化学合成等2种生产虾青素的方法外,还可利用细菌、原生动物、农作物体内的β-胡萝卜素作为前体物质,通过转基因技术将合成虾青素的酶转入相应农作物中合成虾青素。但目前,这种生产虾青素的方法仅仅处于实验研究中。